TransIT-X2® Dynamic Delivery System

Quick Reference Protocol

<u>DNA Delivery</u> Instructions for MIR 6000, 6003, 6004, 6005, 6006, 6010 Full protocol, SDS and Certificate of Analysis available at mirusbio.com/6000

SPECIFICATIONS

Storage	Store <i>Trans</i> IT-X2® Dynamic Delivery System tightly capped at –20°C. <i>Before each use</i> , warm to room temperature and vortex gently.
Product Guarantee	1 year from the date of purchase, when properly stored and handled.

▶ TRANSFECTION PROTOCOL | PLASMID DNA

Fill in volumes below based on culture vessel used for transfection (Table 1).

A. Plate cells

1. Plate cells in ___ml complete growth medium (per well or flask) 18-24 hours prior to transfection to ensure cells are actively dividing at the time of transfection.

For adherent cells: Plate cells at a density of $0.8-3.0 \times 10^5$ cells/ml. For suspension cells: Plate cells at a density of $2.5-5.0 \times 10^5$ cells/ml.

2. Culture overnight. Most cell types should be ≥80% confluent at time of transfection.

B. Prepare TransIT-X2®Reagent:DNA complexes

- 1. Warm *Trans*IT-X2® Reagent to room temperature and vortex gently.
- 2. Place ____µl of OptiMEM® I Reduced-Serum Medium in a sterile tube.
- 3. Add ____µl plasmid DNA. Mix gently by pipetting.
- 4. Add μl of *Trans*IT-X2[®]. Mix gently by pipetting.
- 5. Incubate at room temperature for 15-30 minutes.

C. Distribute complexes to cells

- 1. Add TransIT-X2®: DNA complex mixture drop-wise to different areas of the well.
- 2. Gently rock plate for even distribution of complexes.
- 3. Incubate 24-72 hours.
- 4. Harvest cells and assay as required.

Table 1. Recommended starting conditions

Culture vessel	24-well plate	12-well plate	6-well plate
Surface area	1.9 cm ²	3.8 cm ²	9.6 cm ²
Complete growth medium	0.5 ml	1 ml	2.5 ml
Serum-free medium	50 μΙ	100 μΙ	250 μΙ
DNA (1 μg/μl stock)	0.5 μΙ	1 μΙ	2.5 μΙ
TransIT-X2® Reagent	1.5 μΙ	3 μΙ	7.5 µl

▶ Transfection Optimization

Determine the best $TransIT-X2^{\circ}$:DNA ratio for each cell type. Start with 3 μ l of $TransIT-X2^{\circ}$ per 1 μ g of DNA. Vary the concentration of $TransIT-X2^{\circ}$ from 2–6 μ l per 1 μ g DNA to find the optimal ratio.

For additional optimization tips, see <u>full protocol</u>. Cell-type-specific recommendations available at **Reagent Agent:** mirusbio.com/ra

TransIT-X2® Dynamic Delivery System

Quick Reference Protocol

<u>siRNA Delivery</u> Instructions for MIR 6000, 6003, 6004, 6005, 6006, 6010 Full protocol, SDS and Certificate of Analysis available at mirusbio.com/6000

SPECIFICATIONS

Storage	Store <i>Trans</i> IT-X2® Dynamic Delivery System tightly capped at –20°C. <i>Before each use</i> , warm to room temperature and vortex gently.
Product Guarantee	1 year from the date of purchase, when properly stored and handled.

▶ TRANSFECTION PROTOCOL | siRNA

Fill in volumes below based on culture vessel used for transfection (Table 2).

A. Plate cells

1. Plate cells in ___ml complete growth medium (per well or flask) 18-24 hours prior to transfection to ensure cells are actively dividing at the time of transfection.

For adherent cells: Plate cells at a density of $0.8-3.0 \times 10^5$ cells/ml. For suspension cells: Plate cells at a density of $2.5-5.0 \times 10^5$ cells/ml.

2. Culture overnight. Most cell types should be ≥80% confluent at time of transfection.

B. Prepare TransIT-X2®Reagent:siRNA complexes

- 1. Warm TransIT-X2® Reagent to room temperature and vortex gently.
- 2. Place μl of OptiMEM® I Reduced-Serum Medium in a sterile tube.
- 3. Add ____µl *Trans*IT-X2[®]. Mix gently by pipetting.
- 4. Add ___µl of a 10 μ M siRNA stock solution (25 nM final concentration in well). Mix gently by pipetting.
- 5. Incubate at room temperature for 15-30 minutes.

C. Distribute complexes to cells

- 1. Add TransIT-X2®:siRNA complex mixture drop-wise to different areas of the well.
- 2. Gently rock plate for even distribution of complexes.
- 3. Incubate 24-72 hours.
- 4. Harvest cells and assay for knockdown of gene expression.

Table 2. Recommended starting conditions

Culture vessel	24-well plate	12-well plate	6-well plate
Surface area	1.9 cm ²	3.8 cm ²	9.6 cm ²
Complete growth medium	0.5 ml	1 ml	2.5 ml
Serum-free medium	50 μΙ	100 μΙ	250 μΙ
siRNA (10 μM stock, 25 nM final)	1.4 μΙ	2.8 μΙ	6.8 µl
TransIT-X2® Reagent	1.5 μΙ	3 μΙ	7.5 µl

▶ Transfection Optimization

Determine the best TransIT-X2*:DNA ratio for each cell type. Start with 3 μ l of TransIT-X2* per 1 μ g of DNA. Vary the concentration of TransIT-X2* from 2–6 μ l per 1 μ g DNA to find the optimal ratio.

For additional optimization tips, see <u>full protocol</u>. Cell-type-specific recommendations available at **Reagent Agent:** mirusbio.com/ra

TransIT-X2® Dynamic Delivery System

Quick Reference Protocol

<u>DNA and siRNA Delivery</u> Instructions for MIR 6000, 6003, 6004, 6005, 6006, 6010 Full protocol, SDS and Certificate of Analysis available at mirusbio.com/6000

SPECIFICATIONS

Storage	Store <i>Trans</i> IT-X2® Dynamic Delivery System tightly capped at –20°C. <i>Before each use</i> , warm to room temperature and vortex gently.
Product Guarantee	1 year from the date of purchase, when properly stored and handled.

▶ TRANSFECTION PROTOCOL | DNA & siRNA

Full protocol and additional documentation available at *mirusbio.com/6000*

Fill in volumes below based on culture vessel used for transfection (Table 3).

A. Plate cells

1. Plate cells in ___ml complete growth medium (per well or flask) 18-24 hours prior to transfection to ensure cells are actively dividing at the time of transfection.

For adherent cells: Plate cells at a density of 0.8—3.0 x 10⁵ cells/ml.

For suspension cells: Plate cells at a density of 2.5—5.0 x 10⁵ cells/ml.

2. Culture overnight. Most cell types should be ≥80% confluent at time of transfection.

B. Prepare TransIT-X2®Reagent:DNA:siRNA complexes

- 1. Warm TransIT-X2® Reagent to room temperature and vortex gently.
- 2. Place ____µl of OptiMEM® I Reduced-Serum Medium in a sterile tube.
- 3. Add ____µl plasmid DNA. Mix gently by pipetting.
- Add ____µl of a 10 μM siRNA stock solution (25 nM final concentration in well).
 Mix gently by pipetting.
- 5. Add ____µl TransIT-X2® Reagent. Mix gently by pipetting.
- 6. Incubate at room temperature for 15-30 minutes.

C. Distribute complexes to cells

- 1. Add co-transfection complex mixture drop-wise to different areas of the well.
- 2. Gently rock plate for even distribution of complexes.
- 3. Incubate 24-72 hours.
- 4. Harvest cells and assay as required.

Table 3. Recommended starting conditions

Culture vessel	24-well plate	12-well plate	6-well plate
Surface area	1.9 cm ²	3.8 cm ²	9.6 cm ²
Complete growth medium	0.5 ml	1 ml	2.5 ml
Serum-free medium	50 μΙ	100 μΙ	250 μΙ
DNA (1 μg/μl stock)	0.5 μΙ	1 μΙ	2.5 μΙ
siRNA (10 μM stock, 25 nM final)	1.4 μΙ	2.8 μΙ	6.8 µl
TransIT-X2® Reagent	1.5 μΙ	3 μΙ	7.5 µl

▶ Transfection Optimization

The amount of *Trans*IT-X2* required for co-transfection is dictated by the amount of DNA. Determine the best *Trans*IT-X2* Reagent:DNA ratio for each cell type. Start with 3 µl of *Trans*IT-X2* per 1 µg of DNA. Vary the concentration of *Trans*IT-X2* from 2–6 µl per 1 µg DNA to find the optimal ratio.

For additional optimization tips, see <u>full protocol</u>. Cell-type-specific recommendations available at **Reagent Agent:** mirusbio.com/ra

Reagent Agent* is an online tool designed to help determine the best solution for nucleic acid delivery based on in-house data, customer feedback and citations.

Learn more at: mirusbio.com/ra

©1996-2020 All rights reserved. Mirus Bio LLC. All trademarks are the property of their respective owners. For terms and conditions, visit www.mirusbio.com

Rev.E 041019